Технология и результаты региональных магнитотеллурических исследований

В течение более чем трех десятилетий на кафедре геофизики геологического факультета МГУ под руководством проф. М.Н. Бердичевского и доц. А.Г. Яковлева на факультете ВМиК под руководством проф. В.И. Дмитриева ведутся исследования по геоэлектрике (главным образом, по магнитотеллурике), направленные на изучение осадочного чехла, консолидированной земной коры и верхней мантии Земли.
Современная методика региональных и глубинных геоэлектрических съемок, проводимых в России, во многом сформировалась под влиянием этих исследований, восходящих к лондонским работам акад. А.Н. Тихонова. На этой основе возникла геоэлектрическая школа Московского университета, сыгравшая важную роль в развитии отечественной геоэлектрики.

Исследования геофизиков МГУ охватывают вопросы теории геоэлектромагнитных методов и интерпретации электромагнитных наблюдений. Работа ведется в тесном сотрудничестве с компаниями «Северо-Запад», обеспечивающей полевой эксперимент.

В геоэлектрической школе МГУ получены следующие важные результаты: 1) разработана теория электромагнистных аномалий, вызванных геоэлектрической неоднородностью земных недр; 2) разработаны принципы построения интерпретационных моделей; 3) предложены эффективные стратегии интерпретации. В настоящей статье представлены практические результаты недавних региональных исследований, проведенных сотрудниками кафедры геофизики МГУ и ООО «Северо-Запад» в ряде регионов России.

Методика региональных магнитотеллурических исследований.

Магнитотеллурика, состоящая из двух ветвей — магнитотеллурического зондирования (МТЗ) и магнитовариационного зондирования (МВЗ), является важной частью прошедшего комплекса региональных геофизических исследований, проводимых с целью изучения осадочного чехла и кристаллического фундамента в непереотложенных и рудоносных регионах. Авторы статьи принимали участие в МГУ-исследованиях, выполненных компаниями «Северо-Запад» на Русской плите, в Предкавказье, на Урале, в Сибири и на Северо-Востоке России. Работы, как правило, проводились по заказу МПР РФ совместно с ФГУ ГНПП «Спецгеофизика», ФГУП «Кавказгеоэлектрика», Центром «ГЕОН», ООО «ЦЭМИ».

Особенность этих работ заключалась в том, что МТ- и МВ-зондирование выполнялись по противоположным профилем (поперечная колонка с текстом: обычно 1—2 км) благодаря применению надежных и простых в использовании измерительных станций (главным образом, станций канадской фирмы Phoenix Geophysics) производительности полевых работ была достаточно высокой. Сложнее всего обстояло дело с обработкой и интерпретацией большого объема получаемых данных, поскольку зачастую приходилось работать в районах с высоким уровнем промышленных помех и сложным геоэлектрическим строением.

Регистрация и обработка данных. Современная измерительная аппаратура и методика полевых работ позволяют при отсутствии промышленных помех получить важные значе- ния тензоров импеданса с погрешностью до 1% по модулю и 10° по фазе. При наличии сильных помех точность измере- ний ухудшается. Для подавления помех используются системы синхронных наблюдений.

Источниками электромагнитных помех являются индустриальные установки, трубопроводы, линии электропередачи. Наиболее интенсивные помехи от электрифицированных железных дорог (ЭЖД), образующих в европейской части России густую сеть. Помехи ЭЖД создают помехи, стекающие в землю с рельсов. Они обладают интенсивной электрической и сравнительно слабой магнитной составляющей, что отличает их от МТ-поля. В настоящее время МТ-поле и поле ЭЖД разделяются с помощью ручной коррекции кривых кажу- щегося сопротивления. Характерным признаком помехи являются локальные восходящие ветви, откликающиеся от кривой кажущегося сопротивления. Эти участки удаляются, а кривая кажущегося сопротивления ставителяется при помощи слайферов. Если в непосредственной близости от ЭЖД не удаётся получить МТ-данные достаточно высокого качества, то на первый план выходит более полемохимическое МВ-зонд-ирование. Кроме того, используется метод установления поля (СЗ) с индукционным возбуждением и индукционным прием- ем поля с накоплением сигнала.

Нормализация, анализ и трансформация МТ-данных. Дру- гая важная проблема МГУ-исследований связана с исключением кривых МТЗ локальными приповерхностными неоднородностями, образующими неинтерпретируемый геоэлектрический шум. Эти искажения проникают в смещении кривых кажу- щегося сопротивления влево вертикальной оси. Наиболее простой способ подавления геоэлектрического шума — это слаживание графиков кажущегося сопротивления на некоторой выбранной частоте и смещение кривых кажущегося сопротивления вверх с учетом этого смещения. Более надежная нормализация кривых МТЗ обеспечивается их приведением к кривым ЗС, данными для интерпретации МТ-данных отводится типерс и физическим импедансом, которые на нижних частотах сво- бодны от приповерхностных искажений.

Важнейшим этапом интерпретации является анализ поле- вых данных, позволяющий построить интерпретационную модель. На этом этапе находятся геологические и геоэлектрические направления тензора импеданса (метод Эйрера, SVD-метод) и строются частотные разрезы магнитотеллурических параметров, определяющих размеры, положение и соотношение изучаемых структур. Анализируются также диаграммы тензора импеданса и индукционные векторы, локализующие неодно- родности различных классов и фиксирующие пространственные вытянутые региональные структуры. Кроме того, применяют—
с методы декомпозиции тензора импеданса (метод Бара, метод Грума-Бэйли, недавно предложенный метод фазового тензора), позволяющие разделить эффекты региональных и локальных структур.

Интерпретация МТ-данных. На основе анализа МТ-данных выбирается размерность интерпретационной модели — обычно 1D или 2D. Важным условием получения достоверного и детального разреза является использование всей имеющейся априорной информации. Для оценки надежности 1D-2D интерпретация выполняется 3D моделирование и оцениваются трехмерные эффекты. Интерпретация обычно проводится последовательно в два этапа. На первом (грузбом) этапе интерпретация выполняется в классе сглаженных градиентных сред. На втором этапе используются кусочно-однородные (блочные) среды и уточняется строение отдельных наиболее интересных участков. В интерпретации участвуют все компоненты МТ-данных, хотя их одновременная инверсия далеко не всегда эффективна из-за различной чувствительности к геоэлектрическим структурам и разной устойчивости к трехмерным искажениям.

Интерпретация МТ-данных в платформенных условиях при изучении осадочного чехла платформы мы обычно распологаем обширной априорной информации о строении среды. Как правило, имеются результаты каротажа глубоких скважин, расположенных вблизи профиля. Во многих случаях доступны сейсмические результаты, по которым надежно прослеживается рельеф отдельных горизонтов. Используя результаты бурения и сейсморазведки, интерпретатор может контролировать положение слоев в учитываемом возможном несовпадении геоэлектрических и сейсмических границ. Итоговая модель строится в классе кусочно-однородных сред, хорошо описывающих слоистую осадочную толщу с медленным горизонтальным изменением сопротивлений.

Для Русской плиты характерны грабенообразные впадины в фундаменте и валы в осадочном чехле, часто геосинклинальные друг с другом. Основными геоэлектрическими аномалиями создаются именно структуры чехла (валы). Дело в том, что на небольших глубинах (первые сотни метров) на Русской плате присутствуют тонкие высокоомные слои, слабопоглощающие для электрического тока. Над поднятием такого склона резко возрастает поперечная по отношению к структуре компонент тензора импеданса. В этих условиях поперечный импеданс позволяет получить рельеф высокоомного слоя, а продольный импеданс используется для изучения проводящей подзароенной толщи.

Интерпретация МТ-данных в складчатых областях. Складчатые области, как правило, существенно неоднородны по горизонтали, и 1D интерпретация здесь не применима. Объем априорной информации при изучении складчатых областей обычно невелик. В этих условиях интерпретацию начинают с градиентной 2D инверсии, отражающей основные геоэлектрические структуры. Успех интерпретации зависит от выбора стартовой модели, которая должна быть хорошо согласована с общими представлениями о регионе. В ряде случаев на основе градиентной инверсии и гипотезы о геолого-геофизическом строении региона строятся кусочно-однородные (блоковые) модели, которые затем уточняются в процессе интерпретации. Достоинством блочных моделей является их большая геологическая осмысленность. Важно подчеркнуть, что, используя блочные модели, мы можем выполнять интерпретацию в режиме проверки конкурирующих гипотез.

Основная проблема, с которой приходится сталкиваться при изучении складчатых областей, связана с трехмерными искажениями МТ-данных. Часто встречается ситуация, когда на двумерную глубинную структуру накладывается приповерхностная трехмерная структура (например, впадина, заполненная осадками). Здесь продольный импеданс испытывает сильные гальванические искажения, много-кратно превышающие эффект глубинных структур, а поперечный импеданс слабо чувствителен к глубинным структурам. В этой ситуации глубинное строение удастся восстановить по типу слабо искажаемому влиянием трехмерной приповерхностной неоднородности, и оплажающему высокой чувствительностью к глубинным проводящим структурам.

Некоторые результаты региональных исследований. Основной целью региональных промышленных исследований является обеспечение национальной минерально-сырьевой базы, включающее оценку нефтегазоносности осадочных бассейнов и минералогическое районирование территорий. Кроме того, стоят задачи изучения геодинамического состояния регионов, оценки развития и распространения опасных геологических процессов.

Результаты МТЗ на Восточно-Европейской платформе. С 1997 г. на Восточно-Европейской платформе отработан ряд профилей, пересекающих Московскую синеклизу. Токовский свод, Мелекесскую впадину, Воронежскую антеклизу, крив Кирпичного и другие тектонические структуры. Целью работ являлось изучение осадочного чехла (в том числе выделение аномалий повышенной проводимости в девонско-каменноугольных отложениях и прогноз участков предполагаемого развития рифейских отложений), а также выявление неоднородностей в верхней части земной коры (провоящих зон, связанных с глубинными флюидонасыщенными разломами, областями графитизации и сульфидизации пород).

По результатам МТ-исследований выявлен ряд важных особенностей геоэлектрического строения осадочного чехла. В частности, обнаружено, что при переходе от верхних Токовского свода к его бортам проводимость осадочного чехла уменьшается за счет выклинивания наиболее проводящего комплекса, представленного терригенными отложениями среднего и верхнего девона. В Мелекесской впадине отмечено режек несогласие сейсмических и геоэлектрических границ, что обусловлено изменением коллекторских свойств пород и минерализации вод.

Новые данные о геоэлектрическом строении Московской синеклизы получены на профиле IV проекта «Рифей». Работы продвигались в 2001 г., длина профиля составила 630 км (160 точек МТЗ). На геоэлектрическом разрезе, построенным с учетом данных бурения и сейсморазведки ОГТ, отчетливо выделяются интересные с точки зрения нефтегазоносности проводящие породы девона, венда и рифея (рис. 1). Мощность этих отложений в Солигаличском аэлакогене оценивается в 2—3 км. Их сопротивление, составляющее первые единицы Ом·м, указывает на хорошие коллекторские свойства. В пределах некоторых участков с нефтегазоносными структурами, выделенными по данным ОГТ, выявлены низкоомные аномалии, связанные с увеличением пористости предполагаемых коллекторов.

Высокоомный комплекс в основании разреза, датируемый архейским—нижнепротерозойским возрастом, состоит из крупных блоков различных сопротивлений. На бортах Московской синеклизы и на Кубенской моноклине он представлен высокоомными породами предположительно архейского возраста. В центральной части Московской синеклизы основание разреза сложено более проводящими, по-видимому, раннепротерозойскими отложениями. Наибо-
более сложная картина распределения сопротивлений отмечается в пределах Центрально-Кавказского тектонического блока. Аномалии проводимости в районе вулкана Эльбрусь трактуется как магматическая камера (на глубинах 2—8 км) и магматический очаг (глубины свыше 30 км). На геоэлектрическом разрезе находят также отражение зоны тектонических нарушений, проявляющихся в виде проводящих областей, видимо, вследствие их обводненности.

Результаты МТЗ на Южном Урале. В 2001—2002 гг. были проведены региональные работы методом МТЗ по профилью «Уралсейс» длиной 510 км. Отработано 500 точек МТЗ и АМТЗ с шагом 1 км. По результатам интерпретации в геоэлектрической структуре Южного Урала выделяются три общего западно-Уральский, язвящийся частью окраины Восточно-Европейской платформы; Восточно-Уральский, образованный палеозойскими вулканическими и платуниками комплексами основного и ультраосновного состава; Зауральский, являющийся частью Казахстанской щитовой плиты. Коры Восточно-Европейской платформы и Казахстанской платы формируют на геоэлектрических разрезах два крупных водосборных блока, разделенных в районе Урала зоной понижений сопротивлений.

Найболее ярко в геоэлектрическом отношении проявляется разломы: Главный Уральский, Зояткульский, Заан-Нуралтауский и Карталинский. Сопротивление пород в зоне разломов составляет единицы Ом-м, что указывает на их обводненность. К выходу этих зон на поверхность при-
урочены месторождения хрома и золота Магнитогорской структурно-металлогенической зоны.

В Магнитогорской и Зауральской зонах выявлены коровые проводящие слои. Магнитогорская проводящая зона мощностью около 30 км и суммарной продольной проводимостью более 1000 См залегает на глубине 15-25 км. Зауральский коровый проводник плавно сужается на восток от Карпинской разломной зоны. Суммарная продольная проводимость слоя составляет свыше 150 См.


На рис. 3 представлен геоэлектрический разрез, полученный на южной части профиля 2-ДВ. В пределах Кони-Мургальской складчатой системы и Охотско-Чукотского вулканогенного пояса на нескольких участках выделяются глубинные проводящие зоны. Следует отметить корреляцию этих зон с областями, в которых по сейсмическим данным наблюдаются "разрывы" границы Мох. Таким образом, на этих участках возможно наличие зон проницаемости, по которым проходят подземные флюиды к земной поверхности. Дальнейшая работа необходима для понимания закономерностей минерагенетической зональности региона и выработки схем прогноза месторождений полезных ископаемых.

Далее на север в пределах Янко-Кольмской складчатой системы выделяются проводящие зоны, связанные с накоплением отложений в узлоиленных вулканом. На рис. 3 видно, как можно предполагать, обводненность верхней части горизонта, а также на участке с максимальной проводимостью искривление проводимых зон с севера на юг.

В заключении можно сделать следующие выводы.

Применение электромагнитных методов существенно расширяет информативность региональной геофизики. Так, с помощью магнитотеллурического зондирования были получены новые сведения о строении Московской синеклизы (в отложениях кайнозойской осадочной толщи выделены проводящие зоны с хорошей коллекторскими свойствами, в верхней части фундамента обнаружены низкоземные слабометаморфизованные породы). Не менее интересны результаты, полученные на Кавказе и в Предкавказье (на участке Кавказской и Предкавказской областей); на востоке и юге России (на участках Кольской, северо-востока и в Кольской области) и в других регионах мира.

В последние годы широко применяется метод АМГЗ. В настоящее время ведутся работы по применению АМГЗ в различных странах мира. Результаты этих работ позволяют более точно определять строение земной коры и более точно прогнозировать зоны полезных ископаемых.

ОБЪЯВЛЕНИЕ ОБЪЯВЛЕНИЕ ПРИМЕНЕНИЯ МЕТОДА АМГЗ ПРИ ПОИСКАХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

В последние годы широкое применение получил магнитотеллурический метод, основанный на регистрации высокочастотных колебаний электромагнитного поля Земли — метод АМГЗ (акустомагнитотеллурическое зондирование). Распространению АМГЗ способствовал ряд факторов: 1) прогресс в области аппаратуры и программ обработки, 2) простота технологического процесса и, как следствие, возможность проведения зондирования во многих странах мира, 3) хорошее развитие аудиомагнитотеллурического зондирования (АМГЗ), включая двух- и трехмерное моделирование. Все это позволило применить АМГЗ на ряду с зондированием становления поля в ближней зоне (ЗБ) достойное место в комплексе геофизических исследований проводимых при решении структурных задач и поиске месторождений полезных ископаемых.

В течение 2002-2003 гг. сотрудниками кафедры геофизики МГУ и ООО "Северо-Запад" совместно с другими организациями были проведены работы методом АМГЗ и ЗС в различных районах России в комплексе с другими геофизическими методами при поиске нефтяных и газовых месторождений.

В течение 2002—2003 гг. сотрудниками кафедры геофизики МГУ и ООО "Северо-Запад" совместно с другими организациями были проведены работы методом АМГЗ и ЗС в различных районах России в комплексе с другими геофизическими методами при поиске нефтяных и газовых месторождений.